Combien de temps s’écoule-t-il entre le lever et le coucher du Soleil ?
La durée d’une journée dépend à la fois de la date et du lieu.
Pour étudier ses variations au cours d’une année, on peut :
- utiliser un calendrier donnant les heures de lever et de coucher ; il faut alors, pour chaque jour, soustraire l’heure de lever à celle du coucher. Un tel calendrier est calculé pour une latitude donnée.
- utiliser les éphémérides (calculées par l’IMCCE, par exemple).
- utiliser quelques formules de gnomonique, comme je l’ai fait ici.
Sans tenir compte de la réfraction atmosphérique, le résultat du calcul donne :
6 latitudes représentatives ont été choisies.
À la latitude 0° (c’est-à-dire dans les zones situées sur l’équateur), la durée du jour est constamment égale à 12 h.
Quand on s’éloigne de l’équateur et que la latitude augmente, les variations annuelles sont plus prononcées entre l’hiver et l’été. En France métropolitaine par exemple (latitude située au voisinage de 45°), la durée du jour est de plus de 15 h à son maximum, mais à peine 9 h à son minimum.
Le maximum se produit au moment du solstice d’été (en général le 21 juin), et le minimum au solstice d’hiver (en général le 21 décembre).
Toutes ces courbes se croisent en deux points : ce sont les équinoxes de printemps (20 mars) et d’automne (22 septembre). À ces dates, la durée du jour est égale à 12 h, quelle que soit la latitude.
Enfin, pour les latitudes supérieures à 66,6° (c’est-à-dire au-delà du cercle polaire) :
- il existe une période autour du solstice d’été où la journée dure 24 h (le Soleil ne se couche pas)
- symétriquement, autour du solstice d’hiver, la durée est de 0 h (le Soleil ne se lève pas).
Plus la latitude s’approche de 90°, plus ces périodes sont longues.
Pour obtenir ces courbes, j’ai modélisé la déclinaison du Soleil avec :
Ensuite, j’ai calculé l’angle H0, appelé « arc semi-diurne ». C’est l’angle horaire au lever du Soleil.
L’angle H0 ayant pour origine le midi solaire, il faut alors le multiplier par deux pour obtenir la durée du jour, et convertir les degrés en heures (1 h pour 15°, puisque la rotation du Soleil de 360° se fait en 24 h).
Source : Les cadrans solaires. Tout comprendre pour les construire. Denis SAVOIE. (Belin)
Le fichier Python de tracé du graphique :
En complément :
Autre complément : un petit programme qui demande la latitude, la longitude, la date et l’heure saisonnière (été ou hiver), et calcule les heures de lever et coucher du Soleil :
#Calcul des heures de lever et de coucher du Soleil, selon la date indiquée par l'utilisateur
from math import sin, asin
import numpy as np
import pandas as pd
#variables initiales :-----------------------------------
Nmois=[31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]#nombre de jours par mois
nomsmois=["janvier", "février", "mars", "avril", "mai", "juin", "juillet", "août", "septembre", "octobre", "novembre", "décembre"]
J=0#rang du jour dans l'année
donnees=pd.read_csv('EdTimcce.csv', delimiter='\t')
eqtemps=donnees["edt"]
#---------------------------------------------------------
#Récupération des données utilisateur :----------------------
print('Quelle est la date ? (ex. 5 juin)')
date=input()
print('Quelle est la latitude (en degrés) ?')
latitude=float(input())
latitude=np.radians(latitude)
print("Quelle est la longitude (en degrés, positive vers l'Est, négative vers l'Ouest) ?")
longitude=float(input())
print("Fuseau horaire +1 (heure d'hiver) ou +2 (heure d'été) ?")
F=float(input())
#-------------------------------------------------------------------------------------
jour=float(date.split()[0])
mois=date.split()[1]
#Définition des fonctions : -----------------------------------------------------------------
def numerodumois(m):#retourne le numéro du mois donné, de 1 à 12
nummois=0#numéro du mois de 1 à 12
for i in range(0, 12):
if nomsmois[i]==m:
nummois=i+1
return nummois
def rang(jo, m):#calcule et renvoie le rang du jour dans l'année (entre 1 et 365)
i=0
Rang=0
while i < m-1 :
Rang=Rang+Nmois[i]
i=i+1
Rang=Rang+jo
return Rang
def levercoucher(lati, decl):#calcule les heures de lever et coucher du Soleil
Hzero=np.degrees(np.arccos(-np.tan(lati)*np.tan(np.radians(decl))))
return 12-Hzero/15, 12+Hzero/15
def base60(H):#transforme une heure décimale en heures : minutes
Hh=int(H)
Hminutes=round(60*(H-Hh))
return Hh, Hminutes
#Equation du temps
def edtemps(n):
return eqtemps[n-1]/60
def corrlongitude(x):
return x*4/60#à raison de 4 minutes par degré, puis conversion en heures
#------------------------------------------------------------------------------------
J=rang(jour, numerodumois(mois))
declinaison=np.degrees(asin(sin(np.radians(23.44))*sin(np.radians(360*(J-81)/365.2422))))
L, C=levercoucher(latitude, declinaison)
L=L-corrlongitude(longitude)
C=C-corrlongitude(longitude)
Lh, Lminutes=base60(L)
Ch, Cminutes=base60(C)
print("En heure solaire locale, le Soleil se lève à : ", Lh, " h", Lminutes, " min et se couche à ", Ch, " h", Cminutes, "min.")
#corrections de l'équation du temps et du fuseau horaire :
J=int(J)
L=L+edtemps(J)+F
C=C+edtemps(J)+F
Lh, Lminutes=base60(L)
Ch, Cminutes=base60(C)
print("En heure légale, le Soleil se lève à : ", Lh, " h", Lminutes, " min et se couche à ", Ch, " h", Cminutes, "min.")
Le fichier des valeurs d’équation du temps utilisé dans ce script :
Bonjour à vous,
Merci pour cet article très intéressant qui répond exactement à la question que je me posais.
Merci pour cette publication.
Bonjour, je suppose que pour trouver l’explication, il faudrait vérifier sur quels fuseaux horaires sont les pays de ces deux villes. Certains pays ont fait des choix de fuseaux horaires différents de ceux des autres pays situés vers le même méridien (la France, par exemple). Si on compare Sapporo et Marseille : leurs longitudes sont séparées de 136°, soit 9h de décalage. Mais les fuseaux horaires de leurs pays n’ont peut-être pas le même décalage. À vérifier.
J’ai une question : pourquoi le soleil ne se lève pas à la même heure pour une date donnée pour des villes qui sont à la même latitude ? (par exemple le 4 juillet Marseille 6:04 et Sapporo 4:00)
Je viens d’ajouter le fichier manquant (EdTimcce.csv) en fin d’article.
Ah zut le fichier de données EdTimcce.csv ne semble pas disponible depuis cette page ? (pour passer de l’heure solaire à l’heure UTC ou autre, il est nécessaire d’utiliser une sorte d’abaque ?)
Merci pour le partage !
(précision tout à fait mineure : pour le calcul du rang du jour, les années bissextiles ne sont pas gérées – l’année n’étant de toute façon pas demandée ; mais l’impact doit être très faible)